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Motivation

Imagine a situation where a learner makes daily predictions on the
value of a hidden function at particular given inputs

For example, predicting tomorrow’s temperature given known inputs
such as location, today’s temperature, humidity, etc.
Predicting stock price values given as another example

After each prediction, the learner receives feedback—through
obtaining the actual function value, for example.
This model of learning is called online learning.
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Motivation continued

Using the repeated feedback, we expect the learner to eventually make
better predictions.
We are curious about how fast better predictions can be made.

Can we bound the maximum error that the best learner can produce in
the worst-case scenario?
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Definitions

We study a model first defined by Kimber and Long (1995).
Let F be a family of real functions
Let A be an algorithm attempting to learn a hidden function f ∈ F .
For every trial t ≥ 0, the algorithm is given an input xt and queried on
the value of f (xt).
A outputs its prediction ŷt .
The value of f (xt) is then revealed to A.
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Definitions

For each trial t, let the raw error et denote the absolute value of the
difference between the prediction ŷt and the true value f (xt)

Eventually, we expect et to approach zero

For any real p ≥ 1, define the p-error function to be the sum of pth

powers of the raw errors of each trial, for arbitrarily many trials:∑
t≥1

ept =
∑
t≥1

|ŷt − f (xt)|p.

Weian Xie (The Hotchkiss School) Worst-case Online Learning Oct 2024 5 / 22



Definitions

We now define the worst-case learning error for the best possible algorithm
in learning a function in F .

Definition for optp(F)

For a real p ≥ 1, define optp(F) as the best upper bound on the p-error
function for any algorithm attempting to learn a function f ∈ F .
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Functions satisfying "smoothness" constraints

The basis of our assumption that a learner can eventually make better
guesses relies on the fact that the function to be learned is sufficiently
predictable (eg. "smooth" functions).
Kimber and Long’s model studies particular such families of functions
Fq, defined as follows.

Definition
For any real q ≥ 1, let Fq be the family of all absolutely continuous
functions f : [0, 1] → R such that

∫ 1
0 |f ′(x)|qdx ≤ 1.

Definition
Let F∞ be the family of all absolutely continuous functions f : [0, 1] → R
such that |f (x1)− f (x2)| ≤ |x1 − x2| for all x1, x2 ∈ [0, 1].
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An example function f in F1

x

y

f (x)

1

1

Note that f ∈ F1 as∫ 1

0
|f ′(x)|dx =

∫ 1

0
f ′(x)dx = f (1)− f (0) = 1.
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An example function in F∞

x

y

f (x)

1

1

Let f (x) be a function with |f ′(x)| ≤ 1 for all x ∈ (0, 1). Then, by IVT, if
there exists 0 ≤ x1 < x2 ≤ 1 such that

|f (x1)− f (x2)| > |x1 − x2|,

there exists x ∈ [x1, x2] with |f ′(x)| > 1, contradiction; thus, f ∈ F∞.
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A Simple Example

To illustrate these concepts, we show a proof of a simple result.

Proposition (Kimber and Long, 1995)
For all p, q ≥ 1, we have that optp(Fq) ≥ 1.

Proof:
Let f ∈ Fq be the hidden function, which we don’t fix yet.
Consider the perspective of an adversary, working against the learner
to maximize error by adapting f .
For trial 0, let x0 = 0, and reveal f (x0) = 0.
Note that the functions g(x) ≡ x and h(x) ≡ −x are both in Fq, for
any q ≥ 1, as∫ 1

0
|g ′(x)|qdx =

∫ 1

0
|h′(x)|qdx =

∫ 1

0
1dx ≤ 1.
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A Simple Example Continued

Proposition (Kimber and Long, 1995)
For all p, q ≥ 1, we have that optp(Fq) ≥ 1.

Proof (continued):
Now, for trial 1, let x1 = 1, and query the learner on the value of f (x1)

If the prediction ŷ1 ≥ 0, we reveal f (1) = −1, and from now on fix
f (x) ≡ h(x) = −x .
If the prediction ŷ1 < 0, we reveal f (1) = 1, and from now on fix
f (x) ≡ g(x) = x .
In any case, we (the adversary) guarantee a raw error |ŷt − f (1)| ≥ 1.
Thus, the p-error function will always be at least |ŷt − f (1)|q ≥ 1.
Therefore, the best upper bound on the p-error function, which is
optp(Fq), is at least 1.
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Research Question

What is the value of optp(Fq) for all choices of p, q ≥ 1?
When is it finite?
Can we obtain precise values?
Can we obtain upper and lower bounds that are close?
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Kimber and Long (1995)

Kimber and Long (1995) proved the following negative results.

Theorem (1995)
For any p ≥ 1, we have optp(F1) = ∞.

Theorem (1995)
For any q ≥ 1 or q = ∞, we have opt1(Fq) = ∞.

In other words, whenever p = 1 or q = 1, finite learning error cannot be
guaranteed.
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Kimber and Long (1995)

Kimber and Long (1995) also established the following positive results,
including a precise equality when p, q ≥ 2.

Theorem (1995)
For all p, q ≥ 2, we have optp(Fq) = 1.

Theorem (1995)

For all p ∈ (1, 2) and all q ≥ 2, we have optp(Fq) = O
(

1
p−1

)
.
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Geneson and Zhou (2023)

Geneson and Zhou (2023) improved the previous bound and proved a
matching lower bound differing by a constant factor.

Theorem (2023)

For all p ∈ (1, 2) and all q ≥ 2, we have optp(Fq) = Θ
(

1√
p−1

)
.

They also established another upper bound.

Theorem (2023)

For all p ≥ 2 and q ∈ (1, 2), we have optp(Fq) = O
(

1
q−1

)
.

In addition, they extended the region of (p, q) where optp(Fq) = 1.

Theorem (2023)

For any q > 1 and p ≥ 2 + 1
q−1 , we have optp(Fq) = 1.
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Previous Bounds
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Figure 1: All previous bounds/equalities on optp(Fq) for p, q > 1
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New Results

Now, we discuss our new results.
First, we established the first ever upper bound on optp(Fq) when
p, q ∈ (1, 2), confirming its finiteness.
Second, we proved a conjecture from Geneson and Zhou (2023) that
intuitively means that polynomials in Fq are not any easier to learn
than any general function in Fq, for any q ≥ 1.
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An Upper Bound on optp(Fq) for p, q ∈ (1, 2)

We establish the first upper bound for the case where p, q ∈ (1, 2).

Theorem
For all δ, ϵ ∈ (0, 1), we have opt1+δ(F1+ϵ) = O(min(δ, ϵ)−1).

As such, we achieve a complete characterization of all p, q ≥ 1 that result
in optp(Fq) being finite, a problem open since Kimber and Long (1995)
defined the model. Our result confirms a conjecture by Geneson and Zhou
(2023).

Corollary
The worst-case learning error optp(Fq) is finite if and only if p, q > 1.
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Current bounds for all p, q
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Figure 2: All bounds on optp(Fq) for p, q > 1 including new results
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A Result About Learning Polynomials

We confirmed a conjecture by Geneson and Zhou (2023) regarding the
online learning of polynomials
Intuitively, the result states that it is not any easier to learn a
polynomial in Fq than any general function in Fq.
For any q ≥ 1, let Pq denote the family of polynomials P such that
P ∈ Fq. Then, we have:

Theorem
For all p > 0 and q ≥ 1, we have optp(Pq) = optp(Fq).
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