Worst-case Error Bounds for Online Learning

Weian (Andrew) Xie Mentor: Dr. Jesse Geneson

The Hotchkiss School

October 13, 2024 MIT PRIMES Conference

Weian Xie (The Hotchkiss School)

- Imagine a situation where a learner makes daily predictions on the value of a hidden function at particular given inputs
 - For example, predicting tomorrow's temperature given known inputs such as location, today's temperature, humidity, etc.
 - Predicting stock price values given as another example
- After each prediction, the learner receives feedback—through obtaining the actual function value, for example.
- This model of learning is called **online learning**.

- Using the repeated feedback, we expect the learner to eventually make better predictions.
- We are curious about how fast better predictions can be made.
 - Can we bound the maximum error that the best learner can produce in the worst-case scenario?

We study a model first defined by Kimber and Long (1995).

- $\bullet\,$ Let ${\mathcal F}$ be a family of real functions
- Let A be an algorithm attempting to learn a hidden function $f \in \mathcal{F}$.
- For every trial t ≥ 0, the algorithm is given an input x_t and queried on the value of f(x_t).
- A outputs its prediction \hat{y}_t .
- The value of $f(x_t)$ is then revealed to A.

- For each trial t, let the raw error e_t denote the absolute value of the difference between the prediction \hat{y}_t and the true value $f(x_t)$
 - Eventually, we expect e_t to approach zero
- For any real p ≥ 1, define the p-error function to be the sum of pth powers of the raw errors of each trial, for arbitrarily many trials:

$$\sum_{t\geq 1}e_t^p=\sum_{t\geq 1}|\hat{y}_t-f(x_t)|^p.$$

We now define the worst-case learning error for the best possible algorithm in learning a function in \mathcal{F} .

Definition for $opt_{\rho}(\mathcal{F})$

For a real $p \ge 1$, define $opt_p(\mathcal{F})$ as the best upper bound on the *p*-error function for any algorithm attempting to learn a function $f \in \mathcal{F}$.

Functions satisfying "smoothness" constraints

- The basis of our assumption that a learner can eventually make better guesses relies on the fact that the function to be learned is sufficiently predictable (eg. "smooth" functions).
- Kimber and Long's model studies particular such families of functions *F_q*, defined as follows.

Definition

For any real $q \ge 1$, let \mathcal{F}_q be the family of all absolutely continuous functions $f : [0,1] \to \mathbb{R}$ such that $\int_0^1 |f'(x)|^q dx \le 1$.

Definition

Let \mathcal{F}_{∞} be the family of all absolutely continuous functions $f : [0, 1] \to \mathbb{R}$ such that $|f(x_1) - f(x_2)| \le |x_1 - x_2|$ for all $x_1, x_2 \in [0, 1]$.

An example function f in \mathcal{F}_1

Note that $f \in \mathcal{F}_1$ as

$$\int_0^1 |f'(x)| dx = \int_0^1 f'(x) dx = f(1) - f(0) = 1.$$

Weian Xie (The Hotchkiss School)

An example function in \mathcal{F}_∞

Let f(x) be a function with $|f'(x)| \le 1$ for all $x \in (0, 1)$. Then, by IVT, if there exists $0 \le x_1 < x_2 \le 1$ such that

$$|f(x_1) - f(x_2)| > |x_1 - x_2|,$$

there exists $x \in [x_1, x_2]$ with |f'(x)| > 1, contradiction; thus, $f \in \mathcal{F}_{\infty}$.

A Simple Example

To illustrate these concepts, we show a proof of a simple result.

Proposition (Kimber and Long, 1995)

For all $p, q \geq 1$, we have that $\operatorname{opt}_p(\mathcal{F}_q) \geq 1$.

Proof:

- Let $f \in \mathcal{F}_q$ be the hidden function, which we don't fix yet.
- Consider the perspective of an adversary, working against the learner to maximize error by adapting f.
- For trial 0, let $x_0 = 0$, and reveal $f(x_0) = 0$.
- Note that the functions $g(x) \equiv x$ and $h(x) \equiv -x$ are both in \mathcal{F}_q , for any $q \geq 1$, as

$$\int_0^1 |g'(x)|^q dx = \int_0^1 |h'(x)|^q dx = \int_0^1 1 dx \le 1.$$

A Simple Example Continued

Proposition (Kimber and Long, 1995)

For all $p, q \ge 1$, we have that $\operatorname{opt}_p(\mathcal{F}_q) \ge 1$.

Proof (continued):

- Now, for trial 1, let $x_1 = 1$, and query the learner on the value of $f(x_1)$
- If the prediction $\hat{y}_1 \ge 0$, we reveal f(1) = -1, and from now on fix $f(x) \equiv h(x) = -x$.
- If the prediction $\hat{y}_1 < 0$, we reveal f(1) = 1, and from now on fix $f(x) \equiv g(x) = x$.
- In any case, we (the adversary) guarantee a raw error $|\hat{y}_t f(1)| \geq 1$.
- Thus, the *p*-error function will always be at least $|\hat{y}_t f(1)|^q \ge 1$.
- Therefore, the best upper bound on the *p*-error function, which is opt_p(F_q), is at least 1.

- What is the value of $\operatorname{opt}_p(\mathcal{F}_q)$ for all choices of $p, q \geq 1$?
 - When is it finite?
 - Can we obtain precise values?
 - Can we obtain upper and lower bounds that are close?

Kimber and Long (1995) proved the following negative results.

Theorem (1995)

For any $p \geq 1$, we have $\operatorname{opt}_p(\mathcal{F}_1) = \infty$.

Theorem (1995)

For any $q \geq 1$ or $q = \infty$, we have $\mathsf{opt}_1(\mathcal{F}_q) = \infty$.

In other words, whenever p = 1 or q = 1, finite learning error cannot be guaranteed.

Kimber and Long (1995) also established the following positive results, including a precise equality when $p, q \ge 2$.

Theorem (1995)

For all $p, q \geq 2$, we have $\operatorname{opt}_p(\mathcal{F}_q) = 1$.

Theorem (1995)

For all
$$p\in(1,2)$$
 and all $q\geq 2$, we have ${
m opt}_p(\mathcal{F}_q)=O\left(rac{1}{p-1}
ight).$

14 / 22

Geneson and Zhou (2023)

Geneson and Zhou (2023) improved the previous bound and proved a matching lower bound differing by a constant factor.

Theorem (2023)

For all
$$p\in(1,2)$$
 and all $q\geq 2$, we have $\mathsf{opt}_p(\mathcal{F}_q)=\Theta\left(rac{1}{\sqrt{p-1}}
ight)$

They also established another upper bound.

Theorem (2023)

For all
$$p\geq 2$$
 and $q\in (1,2)$, we have ${
m opt}_{
ho}({\mathcal F}_q)=O\left(rac{1}{q-1}
ight).$

In addition, they extended the region of (p, q) where $opt_p(\mathcal{F}_q) = 1$.

Theorem (2023)

For any
$$q>1$$
 and $p\geq 2+rac{1}{q-1}$, we have ${\rm opt}_p(\mathcal{F}_q)=1.$

Weian Xie (The Hotchkiss School)

Previous Bounds

Figure 1: All previous bounds/equalities on $opt_p(\mathcal{F}_q)$ for p, q > 1

- Now, we discuss our new results.
- First, we established the first ever upper bound on $\operatorname{opt}_{p}(\mathcal{F}_{q})$ when $p, q \in (1, 2)$, confirming its finiteness.
- Second, we proved a conjecture from Geneson and Zhou (2023) that intuitively means that polynomials in \mathcal{F}_q are not any easier to learn than any general function in \mathcal{F}_q , for any $q \ge 1$.

An Upper Bound on $\operatorname{opt}_p(\mathcal{F}_q)$ for $p, q \in (1,2)$

We establish the first upper bound for the case where $p, q \in (1, 2)$.

Theorem

For all
$$\delta, \epsilon \in (0, 1)$$
, we have $\mathsf{opt}_{1+\delta}(\mathcal{F}_{1+\epsilon}) = O(\min(\delta, \epsilon)^{-1})$.

As such, we achieve a complete characterization of all $p, q \ge 1$ that result in $\operatorname{opt}_p(\mathcal{F}_q)$ being finite, a problem open since Kimber and Long (1995) defined the model. Our result confirms a conjecture by Geneson and Zhou (2023).

Corollary

The worst-case learning error $opt_p(\mathcal{F}_q)$ is finite if and only if p, q > 1.

Current bounds for all p, q

Figure 2: All bounds on $opt_p(\mathcal{F}_q)$ for p, q > 1 including new results

- We confirmed a conjecture by Geneson and Zhou (2023) regarding the online learning of polynomials
- Intuitively, the result states that it is not any easier to learn a polynomial in \mathcal{F}_q than any general function in \mathcal{F}_q .
- For any $q \ge 1$, let \mathcal{P}_q denote the family of polynomials P such that $P \in \mathcal{F}_q$. Then, we have:

Theorem

For all p > 0 and $q \ge 1$, we have $\operatorname{opt}_p(\mathcal{P}_q) = \operatorname{opt}_p(\mathcal{F}_q)$.

I am immensely grateful for:

- My mentor, Dr. Geneson, for his time and patience
- My parents, for their support of my passion for math
- My school teachers, Mr. Almeida and Dr. Eso, for their support of my research through granting an Independent Study in school
- PRIMES-USA, for this wonderful research opportunity

References

J. Geneson and E. Zhou

Online learning of smooth functions Theoretical Computer Science 979C: 114203 (2023).

D. Kimber and P. M. Long

On-line learning of smooth functions of a single variable *Theoretical Computer Science* **148** (1995) 141–156.

P. M. Long

Improved bounds about on-line learning of smooth functions of a single variable

Theoretical Computer Science 241 (2000) 25-35.

22 / 22