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Motivation

@ Imagine a situation where a learner makes daily predictions on the
value of a hidden function at particular given inputs
e For example, predicting tomorrow's temperature given known inputs
such as location, today's temperature, humidity, etc.
o Predicting stock price values given as another example
@ After each prediction, the learner receives feedback—through
obtaining the actual function value, for example.

@ This model of learning is called online learning.
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Motivation continued

@ Using the repeated feedback, we expect the learner to eventually make
better predictions.
@ We are curious about how fast better predictions can be made.

e Can we bound the maximum error that the best learner can produce in
the worst-case scenario?
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Definitions

We study a model first defined by Kimber and Long (1995).
@ Let F be a family of real functions
@ Let A be an algorithm attempting to learn a hidden function f € F.

@ For every trial t > 0, the algorithm is given an input x; and queried on
the value of f(x¢).

A outputs its prediction V.
The value of f(x;) is then revealed to A.
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Definitions

@ For each trial t, let the raw error e; denote the absolute value of the
difference between the prediction y; and the true value f(x;)

o Eventually, we expect e; to approach zero

@ For any real p > 1, define the p-error function to be the sum of pt"
powers of the raw errors of each trial, for arbitrarily many trials:

> el = 19— f(x)lP.

t>1 t>1
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Definitions

We now define the worst-case learning error for the best possible algorithm
in learning a function in F.

Definition for opt,(F)

For a real p > 1, define opt,(F) as the best upper bound on the p-error
function for any algorithm attempting to learn a function f € F.
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Functions satisfying "smoothness" constraints

@ The basis of our assumption that a learner can eventually make better
guesses relies on the fact that the function to be learned is sufficiently
predictable (eg. "smooth" functions).

@ Kimber and Long's model studies particular such families of functions
Fq, defined as follows.

Definition
For any real g > 1, let 4 be the family of all absolutely continuous
functions f : [0,1] — R such that fol |f'(x)|9dx < 1.

A\,

Definition
Let Foo be the family of all absolutely continuous functions f : [0,1] — R
such that |f(x1) — f(x2)| < |x1 — x2| for all x1, x> € [0, 1].

N
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An example function f in F

Ya

Note that f € F7 as

1 1
/o\f(x)|dxz/ f'(x)dx = f(1) — f(0) = 1.

0
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An example function in F,

AN

N
X
+ 1

Let 7(x) be a function with |f'(x)| <1 for all x € (0,1). Then, by IVT, if
there exists 0 < x; < xo < 1 such that

[f(x1) = f(x)| > |x1 — xa,

there exists x € [x1, x2] with |f'(x)| > 1, contradiction; thus, f € F.
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A Simple Example

To illustrate these concepts, we show a proof of a simple result.

Proposition (Kimber and Long, 1995)

For all p,q > 1, we have that opt,(F4) > 1.

Proof:
@ Let f € Fg4 be the hidden function, which we don't fix yet.

o Consider the perspective of an adversary, working against the learner
to maximize error by adapting 7.

e For trial 0, let xp = 0, and reveal f(xg) = 0.

o Note that the functions g(x) = x and h(x) = —x are both in Fg, for
any g > 1, as

1 1 1
/ lg’(x)|9dx = / |H'(x)]9dx = / ldx < 1.
0 0 0
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A Simple Example Continued

Proposition (Kimber and Long, 1995)
For all p,q > 1, we have that opt,(F4) > 1.

Proof (continued):

@ Now, for trial 1, let x; = 1, and query the learner on the value of f(x;)

o If the prediction y; > 0, we reveal f(1) = —1, and from now on fix
f(x) = h(x) = —x.

o If the prediction y; < 0, we reveal f(1) = 1, and from now on fix
f(x) = g(x) = x.

@ In any case, we (the adversary) guarantee a raw error |y; — f(1)| > 1.

@ Thus, the p-error function will always be at least |y — f(1)|9 > 1.

@ Therefore, the best upper bound on the p-error function, which is
opt,(Fq), is at least 1.
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Research Question

o What is the value of opt,(Fy) for all choices of p,q > 17
o When is it finite?
e Can we obtain precise values?
e Can we obtain upper and lower bounds that are close?
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Kimber and Long (1995)

Kimber and Long (1995) proved the following negative results.

Theorem (1995)
For any p > 1, we have opt,(F1) = oc.

Theorem (1995)
For any g > 1 or g = oo, we have opt,(Fy) = cc.

In other words, whenever p =1 or g = 1, finite learning error cannot be
guaranteed.
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Kimber and Long (1995)

Kimber and Long (1995) also established the following positive results,
including a precise equality when p, g > 2.

Theorem (1995)
For all p,q > 2, we have opt,(F,) = 1.

Theorem (1995)
For all p € (1,2) and all g > 2, we have opt,(F¢) = O (,ﬁ)
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Geneson and Zhou (2023)

Geneson and Zhou (2023) improved the previous bound and proved a
matching lower bound differing by a constant factor.

Theorem (2023)

For all p € (1,2) and all g > 2, we have opt,(Fy) = © ( L )

They also established another upper bound.

Theorem (2023)

For all p > 2 and g € (1,2), we have opt,(F,;) = O <ﬁ)

In addition, they extended the region of (p, q) where opt,(F4) = 1.

Theorem (2023)

For any g > 1 and p=2+7 1,we have opt,(Fq) = 1.
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Previous Bounds

Figure 1: All previous bounds/equalities on opt,(F4) for p,q > 1
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New Results

@ Now, we discuss our new results.

o First, we established the first ever upper bound on opt,(F,) when
p, g € (1,2), confirming its finiteness.

@ Second, we proved a conjecture from Geneson and Zhou (2023) that
intuitively means that polynomials in F, are not any easier to learn
than any general function in F,, for any g > 1.
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An Upper Bound on opt,(F) for p, g € (1,2)

We establish the first upper bound for the case where p, g € (1,2).

For all 6, ¢ € (0,1), we have opty, 5(Fi+e) = O(min(d,€)71).

As such, we achieve a complete characterization of all p, g > 1 that result
in opt,(F4) being finite, a problem open since Kimber and Long (1995)
defined the model. Our result confirms a conjecture by Geneson and Zhou
(2023).

The worst-case learning error opt,(Fg) is finite if and only if p, g > 1.
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Current bounds for all p, g

Figure 2: All bounds on opt,(F,) for p, g > 1 including new results
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A Result About Learning Polynomials

@ We confirmed a conjecture by Geneson and Zhou (2023) regarding the
online learning of polynomials

@ Intuitively, the result states that it is not any easier to learn a
polynomial in Fg than any general function in Fg.

e For any g > 1, let P, denote the family of polynomials P such that
P € Fq. Then, we have:

For all p >0 and g > 1, we have opt,(Py) = opt,(Fq).
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